Springer Book Archives
0. Algebraic Preliminaries.- I. Vector Spaces and Linear Maps.- A. Vector Spaces.- B. Linear Maps.- C. Bases, Dimension.- D. Direct Sums, Quotients.- E. Eigenvectors and Eigenvalues (Part i).- F. Dual Spaces.- II. Matrices and Determinants.- A. Matrices.- B. Algebras.- C. Determinants, the Laplace Expansion.- D. Inverses, Systems of Equations.- E. Eigenvalues (Part ii).- III. Rings and Polynomials.- A. Rings.- B. Polynomials.- C. Cayley-Hamilton Theorem.- D. Spectral Theorems.- E. Jordan Form.- IV. Inner Product Spaces.- A. Rn as a Model, Bilinear Forms.- B. Real Inner Product Spaces, Normed Vector Spaces.- C. Complex Inner Product Spaces.- D. Orthogonal and Unitary Groups.- E. Stable Subspaces for Unitary and Orthogonal Groups.- V. Normed Algebras.- A. The Normed Algebras R and C.- B. Some General Results, Quaternions.- C. Alternative and Division Algebras.- D. Cayley-Dickson Process, Hurwitz Theorem.
![]() |
Ask a Question About this Product More... |
![]() |