Warehouse Stock Clearance Sale

Grab a bargain today!


Algebraic Systems of Equations and Computational Complexity Theory
By

Rating

Product Description
Product Details

Table of Contents

Chpater 1 Kuhn’s algorithm for algebraic equations.- §1. Triangulation and labelling.- §2. Complementary pivoting algorithm.- §3. Convergence, I.- §4. Convergence, II.- 2 Efficiency of Kuhn’s algorithm.- §1. Error estimate.- §2. Cost estimate.- §3. Monotonicity problem.- §4. Results on monotonicity.- 3 Newton method and approximate zeros.- §1. Approximate zeros.- §2. Coefficients of polynomials.- §3. One step of Newton iteration.- §4. Conditions for approximate zeros.- 4 A complexity comparison of Kuhn’s algorithm and Newton method.- §1. Smale’s work on the complexity of Newton method.- §2. Set of bad polynomials and its volume estimate.- §3. Locate approximate zeros by Kuhn’s algorithm.- §4. Some remarks.- 5 Incremental algorithms and cost theory.- §1. Incremental algorithms Ih,f.- §2. Euler’s algorithm is of efficiency k.- §3. Generalized approximate zeros.- §4. Ek iteration.- §5. Cost theory of Ek as an Euler’s algorithm.- §6. Incremental algorithms of efficiency k.- 6 Homotopy algorithms.- §1. Homotopies and Index Theorem.- §2. Degree and its invariance.- §3. Jacobian of polynomial mappings.- §4. Conditions for boundedness of solutions.- 7 Probabilistic discussion on zeros of polynomial mappings.- §1. Number of zeros of polynomial mappings.- §2. Isolated zeros.- §3. Locating zeros of analytic functions in bounded regions.- 8 Piecewise linear algorithms.- §1. Zeros of PL mapping and their indexes.- §2. PL approximations.- §3. PL homotopy algorithms work with probability one.- References.- Acknowledgments.

Promotional Information

Springer Book Archives

Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond.com, Inc.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.