Warehouse Stock Clearance Sale

Grab a bargain today!


Artificial Neural Networks for Modelling and Control of Non-Linear Systems
By

Rating

Product Description
Product Details

Table of Contents

1 Introduction.- 1.1 Neural information processing systems.- 1.2 ANNs for modelling and control.- 1.3 Chapter by Chapter overview.- 1.4 Contributions.- 2 Artificial neural networks: architectures and learning rules.- 2.1 Basic neural network architectures.- 2.2 Universal approximation theorems.- 2.3 Classical paradigms of learning.- 2.4 Conclusion.- 3 Nonlinear system identification using neural networks.- 3.1 From linear to nonlinear dynamical models.- 3.2 Parametrization by ANNs.- 3.3 Learning algorithms.- 3.4 Elements from nonlinear optimization theory.- 3.5 Aspects of model validation, pruning and regularization.- 3.6 Neural network models as uncertain linear systems.- 3.7 Examples.- 3.8 Conclusion.- 4 Neural networks for control.- 4.1 Neural control strategies.- 4.2 Neural optimal control.- 4.3 Conclusion.- 5 NLq Theory.- 5.1 A neural state space model framework for neural control design.- 5.2 NLq systems.- 5.3 Global asymptotic stability criteria for NLqs.- 5.4 Input/Output properties — l2 theory.- 5.5 Robust performance problem.- 5.6 Stability analysis: formulation as LMI problems.- 5.7 Neural control design.- 5.8 Control design: some case studies.- 5.9 NLqs beyond control.- 5.10 Conclusion.- 6 General conclusions and future work.- A.1 A generalization of Chua’s circuit.- B Fokker-Planck Learning Machine for Global Optimization.- B.1 Fokker-Planck equation for recursive stochastic algorithms.- B.2 Parametrization of the pdf by RBF networks.- B.3 FP machine: conceptual algorithm.- B.4 Examples.- B.5 Conclusions.

Ask a Question About this Product More...
 
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.