Darboux Transformations in Integrable Systems

By

Rating

Product Description

Product Details

Preface.- 1. 1+1 Dimensional Integrable Systems.- 1.1 KdV equation, MKdV equation and their Darboux transformations. 1.1.1 Original Darboux transformation. 1.1.2 Darboux transformation for KdV equation. 1.1.3 Darboux transformation for MKdV equation. 1.1.4 Examples: single and double soliton solutions. 1.1.5 Relation between Darboux transformations for KdV equation and MKdV equation. 1.2 AKNS system. 1.2.1 2 x 2 AKNS system. 1.2.2 N x N AKNS system. 1.3 Darboux transformation. 1.3.1 Darboux transformation for AKNS system. 1.3.2 Invariance of equations under Darboux transformations. 1.3.3 Darboux transformations of higher degree and the theorem of permutability. 1.3.4 More results on the Darboux matrices of degree one. 1.4 KdV hierarchy, MKdV-SG hierarchy, NLS hierarchy and AKNS system with u(N) reduction. 1.4.1 KdV hierarchy. 1.4.2 MKdV-SG hierarchy. 1.4.3 NLS hierarchy. 1.4.4 AKNS system with u(N) reduction. 1.5 Darboux transformation and scattering, inverse scattering theory. 1.5.1 Outline of the scattering and inverse scattering theory for the 2 x 2 AKNS system . 1.5.2 Change of scattering data under Darboux transformations for su(2) AKNS system. 2. 2+1 Dimensional Integrable Systems.- 2.1 KP equation and its Darboux transformation. 2.2 2+1 dimensional AKNS system and DS equation. 2.3 Darboux transformation. 2.3.1 General Lax pair. 2.3.2 Darboux transformation of degree one. 2.3.3 Darboux transformation of higher degree and the theorem of permutability. 2.4 Darboux transformation and binary Darboux transformation for DS equation. 2.4.1 Darboux transformation for DSII equation. 2.4.2 Darboux transformation and binary Darboux transformation for DSI equation. 2.5 Application to 1+1 dimensional Gelfand-Dickey system. 2.6 Nonlinear constraints and Darboux transformation in 2+1 dimensions. 3. N + 1 Dimensional Integrable Systems.- 3.1 n + 1 dimensional AKNS system. 3.1.1 n + 1 dimensional AKNS system. 3.1.2Examples. 3.2 Darboux transformation and soliton solutions. 3.2.1 Darboux transformation. 3.2.2 u(N) case. 3.2.3 Soliton solutions. 3.3 A reduced system on Rn. 4. Surfaces of Constant Curvature, Backlund Congruences.- 4.1 Theory of surfaces in the Euclidean space R3. 4.2 Surfaces of constant negative Gauss curvature, sine-Gordon equation and Backlund transformations. 4.2.1 Relation between sine-Gordon equation and surface of constant negative Gauss curvature in R3. 4.2.2 Pseudo-spherical congruence. 4.2.3 Backlund transformation. 4.2.4 Darboux transformation. 4.2.5 Example. 4.3 Surface of constant Gauss curvature in the Minkowski space R2,1 and pseudo-spherical congruence. 4.3.1 Theory of surfaces in the Minkowski space R2,1. 4.3.2 Chebyshev coordinates for surfaces of constant Gauss curvature. 4.3.3 Pseudo-spherical congruence in R2,1. 4.3.4 Backlund transformation and Darboux transformation for surfaces of constant Gauss curvature in R2,1. 4.4 Orthogonal frame and Lax pair. 4.5 Surface of constant mean curvature. 4.5.1 Parallel surface in Euclidean space. 4.5.2 Construction of surfaces. 4.5.3 The case in Minkowski space. 5. Darboux Transformation and Harmonic Map.- 5.1 Definition of harmonic map and basic equations. 5.2 Harmonic maps from R2 or R1,1 to S2, H2 or S1,1. 5.3 Harmonic maps from R1,1 to U(N). 5.3.1 Riemannian metric on U(N). 5.3.2 Harmonic maps from R1,1 to U(N). 5.3.3 Single soliton solutions. 5.3.4 Multi-soliton solutions. 5.4 Harmonic maps from R2 to U(N). 5.4.1 Harmonic maps from R2 to U(N) and their Darboux transformations. 5.4.2 Soliton solutions. 5.4.3 Uniton. 5.4.4 Darboux transformation and singular Darboux transformation for unitons. 6. Generalized Self-Dual Yang-Mills and Yang-Mills-Higgs Equations.- 6.1 Generalized self-dual Yang-Mills flow. 6.1.1 Generalized self-dual Yang-Mills flow. 6.1.2 Darboux transformation. 6.1.3 Example. 6.1.4 Relation with AKNS system. 6.2 Yang-Mills-Higgs

From the reviews:

"The book is concerned with mutual relations between the differential geometry of surfaces and the theory of integrable nonlinear systems of partial differential equations. It concentrates on the Darboux matrix method for constructing explicit solutions to various integrable nonlinear PDEs. ... This book can be recommended for students and researchers who are interested in a differential-geometric approach to integrable nonlinear PDE's." (Jun-ichi Inoguchi, Mathematical Reviews, Issue 2006 i)

Ask a Question About this Product More... |

Look for similar items by category

People also searched for

Item ships from and is sold by Fishpond World Ltd.

↑

Back to top