1 Fundamental Notions In Ring Theory.- 1.1 Basic Definitions.- 1.2 Prime and Maximal Ideals.- 1.3 Euclidean Domains, P.I.D.’s and U.F.D.’s.- 1.4 Factorization in $$ {Z_p}n $$[x].- 2 Finite Field Structure.- 2.1 Basic Properties.- 2.2 Characterization of Finite Fields.- 2.3 Galois Field Automorphisms.- 3 Finite Commutative Rings. Regular Polynomials.- 3.1 Finite Commutative Ring Structure.- 3.2 Regular Polynomials in the Ring R[x].- 3.3 R-algebra Automorphisms of R[x].- 3.4 Factorization in R[x].- 4 Separable Extensions of Finite Fields and Finite Rings.- 4.1 Separable Field Extensions.- 4.2 Extensions of Rings.- 4.3 Separable extensions of finite commutative local rings.- 5 Galois Theory for Local Rings.- 5.1 Basic Facts.- 5.2 Examples. Splitting Rings.- 6 Galois and Quasi-Galois Rings: Structure and Properties.- 6.1 Classical Constructions.- 6.2 Galois Ring Properties.- 6.3 Structure Theorems for finite commutative local rings.- 6.4 Another class of finite commutative local rings: Quasi-Galois Rings.- 7 Basic Notions on Codes over Finite Fields.- 7.1 Basic properties.- 7.2 Some families of q-ary codes.- 7.3 Duality between codes.- 7.4 Some families of nonlinear q-ary codes.- 8 Basic Notions on Codes over Galois Rings.- 8.1 Basic properties.- 8.2 Linear quaternary codes.- 8.3 Kerdock and Preparata codes revisited.
Springer Book Archives
![]() |
Ask a Question About this Product More... |
![]() |