We use cookies to provide essential features and services. By using our website you agree to our use of cookies .

×

Warehouse Stock Clearance Sale

Grab a bargain today!


High Speed Signal Propagation
By

Rating

Product Description
Product Details

Table of Contents

Preface.
Glossary of Symbols.
1. Fundamentals.
Impedance of Linear, Time-Invariant, Lumped-Element Circuits. Power Ratios. Rules of Scaling. The Concept of Resonance. Extra for Experts: Maximal Linear System Response to a Digital Input.

2. Transmission Line Parameters.
Telegrapher's Equations. Derivation of Telegrapher's Equations. Ideal Transmission Line. DC Resistance. DC Conductance. Skin Effect. Skin-Effect Inductance. Modeling Internal Impedance. Concentric-Ring Skin-Effect Model. Proximity Effect. Surface Roughness. Dielectric Effects. Impedance in Series with the Return Path. Slow-Wave Mode On-Chip.

3. Performance Regions.
Signal Propagation Model. Hierarchy of Regions. Necessary Mathematics: Input Impedance and Transfer Function. Lumped-Element Region. RC Region. LC Region (Constant-Loss Region). Skin-Effect Region. Dielectric Loss Region. Waveguide Dispersion Region. Summary of Breakpoints Between Regions. Equivalence Principle for Transmission Media. Scaling Copper Transmission Media. Scaling Multimode Fiber-Optic Cables. Linear Equalization: Long Backplane Trace Example. Adaptive Equalization: Accelerant Networks Transceiver.

4. Frequency-Domain Modeling.
Going Nonlinear. Approximations to the Fourier Transform. Discrete Time Mapping. Other Limitations of the FFT. Normalizing the Output of an FFT Routine. Useful Fourier Transform-Pairs. Effect of Inadequate Sampling Rate. Implementation of Frequency-Domain Simulation. Embellishments. Checking the Output of Your FFT Routine.

5. Pcb (printed-circuit board) Traces.
Pcb Signal Propagation. Limits to Attainable Distance. Pcb Noise and Interference. Pcb Connectors. Modeling Vias. The Future of On-Chip Interconnections.

6. Differential Signaling.
Single-Ended Circuits. Two-Wire Circuits. Differential Signaling. Differential and Common-Mode Voltages and Currents. Differential and Common-Mode velocity. Common-Mode Balance. Common-Mode Range. Differential to Common-Mode Conversion. Differential Impedance. Pcb Configurations. Pcb Applications. Intercabinet Applications. LVDS Signaling.

7. Generic Building-Cabling Standards.
Generic Cabling Architecture. SNR Budgeting. Glossary of Cabling Terms. Preferred Cable Combinations. FAQ: Building-Cabling Practices. Crossover Wiring. Plenum-Rated Cables. Laying cables in an Uncooled Attic Space. FAQ: Older Cable Types.

8. 100-Ohm Balanced Twisted-Pair Cabling.
UTP Signal Propagation. UTP Transmission Example: 10BASE-T. UTP Noise and Interference. UTP Connectors. Issues with Screening. Category-3 UTP at Elevated Temperature.

9. 150-Ohm STP-A Cabling.
150-( STP-A Signal Propagation. 150-( STP-A Noise and Interference. 150-( STP-A: Skew. 150-( STP-A: Radiation and Safety. 150-( STP-A: Comparison with UTP. 150-( STP-A Connectors.

10. Coaxial Cabling.
Coaxial Signal Propagation. Coaxial Cable Noise and Interference. Coaxial Cable Connectors.

11. Fiber-Optic Cabling.
Making Glass Fiber. Finished Core Specifications. Cabling the Fiber. Wavelengths of Operation. Multimode Glass Fiber-Optic Cabling. Single-Mode Fiber-Optic Cabling.

12. Clock Distribution.
Extra Fries, Please. Arithmetic of Clock Skew. Clock Repeaters. Stripline vs. Microstrip Delay. Importance of Terminating Clock Lines. Effect of Clock Receiver Thresholds. Effect of Split Termination. Intentional Delay Adjustments. Driving Multiple Loads with Source Termination. Daisy-Chain Clock Distribution. The Jitters. Power Supply Filtering for Clock Sources, Repeaters, and PLL Circuits. Intentional Clock Modulation. Reduced-Voltage Signaling. Controlling Crosstalk on Clock Lines. Reducing Emissions.

13. Time-Domain Simulation Tools and Methods.
Ringing in a New Era. Signal Integrity Simulation Process. The Underlying Simulation Engi

About the Author

DR. HOWARD JOHNSON has accumulated 30years of experience in digital design, consulting withengineers all over the world. He is the featuredSignal Integrity columnist for EDN Magazine andChief Technical Editor of IEEE--02.3 standards for FastEthernet and Gigabit Ethernet. He frequently conductstechnical workshops for digital engineers at OxfordUniversity and other sites worldwide: www.sigcon.com. DR. MARTIN GRAHAM is Professor Emeritus ofElectrical Engineering and Computer Sciences at theUniversity of California at Berkeley. He specializes inteaching the design of reliable and manufacturableelectronic systems.

Ask a Question About this Product More...
 
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top