We use cookies to provide essential features and services. By using our website you agree to our use of cookies .


COVID-19 Response at Fishpond

Read what we're doing...

Introduction to Topological Manifolds


Product Description
Product Details

Table of Contents

Preface.- 1 Introduction.- 2 Topological Spaces.- 3 New Spaces from Old.- 4 Connectedness and Compactness.- 5 Cell Complexes.- 6 Compact Surfaces.- 7 Homotopy and the Fundamental Group.- 8 The Circle.- 9 Some Group Theory.- 10 The Seifert-Van Kampen Theorem.- 11 Covering Maps.- 12 Group Actions and Covering Maps.- 13 Homology.- Appendix A: Review of Set Theory.- Appendix B: Review of Metric Spaces.- Appendix C: Review of Group Theory.- References.- Notation Index.- Subject Index.

About the Author

John M. Lee is a professor of mathematics at the University of Washington. His previous Springer textbooks in the Graduate Texts in Mathematics series include the first edition of Introduction to Topological Manifolds, Introduction to Smooth Manifolds, and Riemannian Manifolds: An Introduction.


From the reviews of the second edition: "An excellent introduction to both point-set and algebraic topology at the early-graduate level, using manifolds as a primary source of examples and motivation. ... The author has ... fulfilled his objective of integrating a study of manifolds into an introductory course in general and algebraic topology. This text is well-organized and clearly written, with a good blend of motivational discussion and mathematical rigor. ... Any student who has gone through this book should be well-prepared to pursue the study of differential geometry ... ." (Mark Hunacek, The Mathematical Association of America, March, 2011)

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
Home » Books » Science » Mathematics » Topology
Home » Books » Science » Mathematics » General
Item ships from and is sold by Fishpond Retail Limited.
Back to top