Preliminaries: Introduction; What is a vector bundle? What is a connection? The curvature of a connection; Characteristic classes; The Thom form; The universal bundle; Classification of connections; Hodge theory. Spin geometry on four-manifolds: Euclidean geometry and the spin groups; What is a spin structure? Almost complex and spin-c structures; Clifford algebras; The spin connection; The Dirac operator; The Atiyah-Singer index theorem. Global analysis: The Seiberg-Witten equations; The moduli space; Compactness of the moduli space; Transversality; The intersection form; Donaldson's theorem; Seiberg-Witten invariants; Dirac operators on Kaehler surfaces; Invariants of Kaehler surfaces. Bibliography. Index.
2nd edition
![]() |
Ask a Question About this Product More... |
![]() |