We use cookies to provide essential features and services. By using our website you agree to our use of cookies .

×

Warehouse Stock Clearance Sale

Grab a bargain today!


Molecular Fluorescence
By

Rating

Product Description
Product Details

Table of Contents

INTRODUCTION
What Is Luminescence?
A Brief History of Fluorescence and Phosphorescence
Photoluminescence of Organic and Inorganic Species: Fluorescence or Phosphorescence?
Various De-Excitation Processes of Excited Molecules
Fluorescent Probes, Indicators, Labels, and Tracers
Ultimate Temporal and Spatial Resolution: Femtoseconds, Femtoliters, Femtomoles, and Single-Molecule Detection

PART I: PRINCIPLES

ABSORPTION OF ULTRAVIOLET, VISIBLE, AND NEAR-INFRARED RADIATION
Electronic Transitions
Transition Probabilities: The Beer -
Lambert Law, Oscillator Strength
Selection Rules
The Franck -
Condon Principle
Multiphoton Absorption and Harmonic Generation

CHARACTERISTICS OF FLUORESCENCE EMISSION
Radiative and Nonradiative Transitions between Electronic States
Lifetimes and Quantum Yields
Emission and Excitation Spectra

STRUCTURAL EFFECTS ON FLUORESCENCE EMISSION
Effects of the Molecular Structure of Organic Molecules on Their Fluorescence
Fluorescence of Conjugated Polymers (CPs)
Luminescence of Carbon Nanostructures: Fullerenes, Nanotubes, and Carbon Dots
Luminescence of Metal Compounds, Metal Complexes, and Metal Clusters
Luminescence of Semiconductor Nanocrystals (Quantum Dots and Quantum Rods)

ENVIRONMENTAL EFFECTS ON FLUORESCENCE EMISSION
Homogeneous and Inhomogeneous Band Broadening - Red-Edge Effects
General Considerations on Solvent Effects
Solvent Relaxation Subsequent to Photoinduced Charge Transfer (PCT)
Theory of Solvatochromic Shifts
Effects of Specific Interactions
Empirical Scales of Solvent Polarity
Viscosity Effects
Fluorescence in Gas Phase: Supersonic Jets

EFFECTS OF INTERMOLECULAR PHOTOPHYSICAL PROCESSES ON FLUORESCENCE
EMISSION
Introduction
Overview of the Intermolecular De-Excitation Processes of Excited Molecules Leading to Fluorescence Quenching
Photoinduced Electron Transfer
Formation of Excimers and Exciplexes
Photoinduced Proton Transfer

FLUORESCENCE POLARIZATION: EMISSION ANISOTROPY
Polarized Light and Photoselection of Absorbing Molecules
Characterization of the Polarization State of Fluorescence (Polarization Ratio and Emission Anisotropy)
Instantaneous and Steady-State Anisotropy
Additivity Law of Anisotropy
Relation between Emission Anisotropy and Angular Distribution of the Emission Transition Moments
Case of Motionless Molecules with Random Orientation
Effect of Rotational Motion
Applications

EXCITATION ENERGY TRANSFER
Introduction
Distinction between Radiative and Nonradiative Transfer
Radiative Energy Transfer
Nonradiative Energy Transfer
Determination of Distances at a Supramolecular Level Using FRET
FRET in Ensembles of Donors and Acceptors
FRET between Like Molecules: Excitation Energy Migration in Assemblies of Chromophores
Overview of Qualitative and Quantitative Applications of FRET

PART II: TECHNIQUES

STEADY-STATE SPECTROFL UOROMETRY
Operating Principles of a Spectrofl uorometer
Correction of Excitation Spectra
Correction of Emission Spectra
Measurement of Fluorescence Quantum Yields
Possible Artifacts in Spectrofl uorometry
Measurement of Steady-State Emission Anisotropy: Polarization Spectra

TIME-RESOLVED FLUORESCENCE TECHNIQUES
Basic Equations of Pulse and Phase-Modulation Fluorimetries
Pulse Fluorimetry
Phase-Modulation Fluorimetry
Artifacts in Time-Resolved Fluorimetry
Data Analysis
Lifetime Standards
Time-Resolved Polarization Measurements
Time-Resolved Fluorescence Spectra
Lifetime-Based Decomposition of Spectra
Comparison between Single-Photon Timing Fluorimetry and Phase-Modulation Fluorimetry

FLUORESCENCE MICROSCOPY
Wide-Field (Conventional), Confocal, and Two-Photon Fluorescence Microscopies
Super-Resolution (Subdiffraction) Techniques
Fluorescence Lifetime Imaging Microscopy (FLIM)
Applications

FLUORESCENCE CORRELATION SPECTROSCOPY AND SINGLE-MOLECULE FLUORESCENCE
SPECTROSCOPY
Fluorescence Correlation Spectroscopy (FCS)
Single-Molecule Fluorescence Spectroscopy

PART III: APPLICATIONS

EVALUATION OF LOCAL PHYSICAL PARAMETERS BY MEANS OF FLUORESCENT PROBES
Fluorescent Probes for Polarity
Estimation of 'Microviscosity', Fluidity, and Molecular Mobility
Temperature
Pressure

CHEMICAL SENSING VIA FLUORESCENCE
Introduction
Various Approaches of Fluorescence Sensing
Fluorescent pH Indicators 412 Transfer (PET)
Design Principles of Fluorescent Molecular Sensors Based on Ion or Molecule Recognition
Fluorescent Molecular Sensors of Metal Ions
Fluorescent Molecular Sensors of Anions
Fluorescent Molecular Sensors of Neutral Molecules
Fluorescence Sensing of Gases
Sensing Devices
Remote Sensing by Fluorescence LIDAR

AUTOFL UORESCENCE AND FLUORESCENCE LABELING IN BIOLOGY AND MEDICINE
Introduction
Natural (Intrinsic) Chromophores and Fluorophores
Fluorescent Proteins (FPs)
Fluorescent Small Molecules
Quantum Dots and Other Luminescent Nanoparticles
Conclusion

MISCELLANEOUS APPLICATIONS
Fluorescent Whitening Agents
Fluorescent Nondestructive Testing
Food Science
Forensics
Counterfeit Detection
Fluorescence in Art

APPENDIX: CHARACTERISTICS OF FLUORESCENT ORGANIC COMPOUNDS

INDEX

About the Author

Bernard Valeur received his engineering diploma from the Ecole Superieure de Physique et de Chimie Industrielles de Paris (E.S.P.C.I.) and his PhD degree from the Universite Pierre-et-Marie-Curie (Paris, France), followed by postdoctoral research at the University of Illinois at Urbana-Champaign (USA). After being an associate professor at E.S.P.C.I, he became full professor of physical chemistry at the Conservatoire National des Arts et Metiers (Paris) in 1979, where he is emeritus professor since 2008. Professor Valeur is a member of the laboratory Photophysique et Photochimie Supramoleculaires et Macromoleculaires at the Ecole Normale Superieure de Cachan since 1996. From 1995 to 2000 he served as an elected member of the French Comite National de la Recherche Scientifique. He is the winner of the 2012 Gregorio Weber Award for Excellence in Fluorescence Theory and Applications and author of over 170 articles or book chapters, five books, and the editor of one book. In addition, he is a member of several editorial boards. Mario Nuno Berberan-Santos graduated in chemical engineering from Instituto Superior Tecnico (IST, Technical University of Lisbon, Portugal). After a brief stay at the National Research Council of Canada (Ottawa), he received his PhD in chemistry from IST in 1989. He was a post-doctoral fellow with Bernard Valeur at Conservatoire National des Arts et Metiers (Paris, France), and at Laboratoire pour l'Utilisation du Rayonnement Electromagnetique (Univ. Paris-Sud, Orsay, France). He is full professor of Physical Chemistry at IST, and was invited full professor at the Ecole Normale Superieure de Cachan (France). He is a member of several editorial advisory boards and is president of the Portuguese Chemical Society (2010 - 2012). He has authored over 180 publications, including 150 papers in scientific journals, several book chapters, and was the editor of one book.

Reviews

"The strength of the book lies in its clear and understandable presentation, and in the thoroughness of the descriptions of fluorescence applications, enabling one to quickly appreciate the many questions and problems in the field of fluorescence. Molecular Fluorescence is more a textbook than a monograph, and therefore it is of special interest for students and beginners in the field, and be recommended."
- Angewandte Chemie (international edition), 2002; Vol. 41 No. 16

Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top