We use cookies to provide essential features and services. By using our website you agree to our use of cookies .


Warehouse Stock Clearance Sale

Grab a bargain today!

Multidimensional Quantum Dynamics


Product Description
Product Details

Table of Contents

The Road to MCTDH
Basic MCTDH Theory
Integration Schemes
Preparation of the Initial Wavepacket
Analysis of the Propagated Wave Packet
MCTDH for Density Operators
Computing Eigenstates by Relaxation and Improved Relaxation
Iterative Diagonalzation of Operators
Correlation Discrete Variable Represenation
Potential Representations (potfit)
Kinetic Energy Operators

Direct Dynamics with Quantum Nuclei
Multilayer Formulation of the Multiconfiguration Time-Dependent Hartree Theory
Shared Memory Parallelization of the Multiconfiguration Time-Dependent Hartree Method
Strongly Driven Few-Fermion Systems -
The Multiconfigurational Time-Dependent Hartree Method for Identical Particles and Mixtures Thereof

Multidimensional Non-Adiabatic Dynamics
MCTDH Calculation of Flux Correlation Functions: Rates and Reaction Probabilities for Polyatomic Chemical Reactions
Reactive and Non-Reactive Scattering of Molecules From Surfaces
Intramolecular Vibrational Energy Redistribution and Infrared Spectroscopy
Open System Quantum Dynamics with Discretized Environments
Proton Transfer and Hydrated Proton in Small Water Systems
Laser-Driven Dynamics and Quantum Control of Molecular Wavepackets
Polyatomic Dynamics of Dissociative Electron Attachment to Water Using MCTDH
Ultracold Few-Boson Systems in Traps

About the Author

Hans-Dieter Meyer is apl. Professor at the University of Heidelberg. He received his PhD in 1978 from the University of Gottingen under the supervision of Professor J.P. Toennies. A postdoctoral year working with W.H. Miller at Berkeley followed before he moved to Heidelberg in 1980. He has published more than 170 articles in refereed journals treating various problems including heavy-particle scattering, electron scattering, computation of resonances, semiclassical methods, quantum chaos, vibronic coupling, system-bath problems, and internal vibrational energy transfer. Over the last decade, this work was mainly concentrated on the development and application of the MCTDH method.

Fabien Gatti is Research Associate Professor in the French Centre National de Recherche Scientifique (CNRS). He studied at the Ecole Normale Superieure de Cachan, has an aggregation in chemistry and received a Masters degree in quantum physics at the Ecole Normale Superieure of Paris (1996). He received his PhD in 1999 under supervision of Professor C. Iung in Montpellier. He spent a postdoctoral year in Heidelberg working with Professor Hans-Dieter Meyer before moving to Montpellier in 2002. His present work is concentrated on MCTDH and the derivation of kinetic energy operators in curvilinear coordinates.

Graham Worth is a Research Fellow at the University of Birmingham. He studied chemistry at the University of Oxford and obtained his DPhil in 1992 under the supervision of Prof. W.G. Richards. Postdoctoral studies followed in Heidelberg, first at the EMBL, then at the University as a Marie-Curie Fellow, where he worked with Hans-Dieter Meyer on the development and implementation of the MCTDH method. After working at King?s College London and Imperial College he moved to Birmingham in 2005. His main research interest is the simulation and understanding of ultrafast laser experiments.

Ask a Question About this Product More...
Look for similar items by category
People also searched for
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top