We use cookies to provide essential features and services. By using our website you agree to our use of cookies .

×

Warehouse Stock Clearance Sale

Grab a bargain today!


Offshore Geotechnical Engineering
By

Rating

Product Description
Product Details

Table of Contents

Preface
Acknowledgements
Contents
Standards and Codes of Practice
Journals and Conferences
Notation

1. INTRODUCTION
1.1. Introduction
1.1.1. What is offshore geotechnical engineering?
1.1.2. Offshore field development stages
1.1.3. Nature of the industry
1.1.4. Preliminary and advanced methods
1.1.4.1. Field experience
1.1.4.2. Field trials
1.1.4.3. Centrifuge model testing
1.1.4.4. Single-gravity model testing
1.1.4.5. Numerical methods
1.1.5. Standards and Code of Practice
1.2. Types of offshore structure
1.2.1. Jacket platforms
1.2.2. Jackups
1.2.3. Gravity platforms
1.2.4. Subsea systems
1.2.5. Cables and pipelines
1.2.6. Anchored structures
1.2.7. Deepwater solutions
1.2.8. Green energy structures
1.2.9. Artificial islands
1.3. The offshore environment
1.3.1. Geohazards
1.3.2. Environmental loads
1.3.3. Calculating wind loads
1.3.4. Calculating wave and current loads
1.3.5. Scour
1.3.6. Seismic loading
1.3.7. Ice loading

2. OFFSHORE SURVEYS
2.1. Introduction
2.1.1. Types and objectives of offshore surveys
2.1.2. Geophysical surveys
2.1.3. Pipeline and cable route surveys
2.1.4. Geotechnical surveys
2.1.5. Types of survey report
2.2. Geotechnical survey equipment and procedures
2.2.1. Geotechnical vessels
2.2.2. Typical requirements
2.2.3. Drilling systems
2.2.4. Sampling systems
2.2.5. In-situ testing
2.3. Interpreting CPT data
2.3.1. What is an offshore CPT test?
2.3.2. Identifying soil types
2.3.3. Design parameters for siliceous sands
2.3.4. Design parameters for clays
2.4. Laboratory testing and reporting
2.4.1. Role of laboratory testing
2.4.2. Classification tests - soils
2.4.3. Classification tests - cemented materials
2.4.4. Strength tests
2.4.5. Consolidation tests
2.4.6. Specialized tests
2.5. Developing a design soil profile
2.5.1. Identifying soil layers
2.5.2. Density and mineralogy
2.5.3. Strength of siliceous sand layers
2.5.4. Strength of carbonate sand layers
2.5.5. Strength of clay layers
2.5.6. Strength of cemented layers
2.6. Reporting
2.6.1. Daily reports
2.6.2. Field report
2.6.3. Factual report
2.6.4. Engineering (interpretive) reports

3. SOIL BEHAVIOUR
3.1. Soil characterization
3.1.1. Particulate nature of soil
3.1.2. Mineralogy and particle shape
3.1.3. Measures of volume and density
3.1.4. Plasticity of fine-grained soils
3.1.5. Classification of soils
3.1.6. Classification of cemented materials
3.1.7. Permeability and drainage
3.2. Stress and strength
3.2.1. Total Stress
3.2.2. Terzaghi’s Principle of Effective Stress
3.2.3. In-situ stresses
3.2.4. Drained shear strength
3.2.5. Undrained shear strength
3.2.6. Critical steady, and residual states
3.3. Elastic and plastic properties
3.3.1. Critical state soil mechanics
3.3.2. Compressibility of soils
3.3.3. Elastic equations – drained case
3.3.4. Elastic equations – undrained case
3.3.5. Measuring the elastic parameters
3.3.6. Yield envelope
3.3.7. Hardening and softening
3.3.8. Sub-yield behaviours
3.3.9. Advanced constitutive models
3.4. Cyclic loading
3.4.1. Types of cyclic loading
3.4.2. Cyclic responses of sands
3.4.3. Cyclic responses of clays

4. JACKUPS
4.1. Introduction
4.1.1. Purpose and description of jackups
4.1.2. Installation issues
4.1.3. Environmental loads
4.1.4. Operational issues
4.1.5. Removal issues
4.2. Preloading
4.2.1. Reason for preloading
4.2.2. Bearing capacity on clay
4.2.3. Bearing capacity on sand
4.2.4. Punchthrough - sand over clay
4.2.5. Other preloading issues
4.3. Foundation assessment
4.3.1. Foundation loading
4.3.2. Yield envelope
4.3.3. Moment fixity
4.3.4. Cyclic degradation
4.4. Jackup dynamics
4.4.1. Stick model
4.4.2. Equations of motion
4.4.3. Solutions
4.4.4. Advanced analyses

5. JACKET PLATFORMS
5.1. Introduction
5.1.1. Purpose and description
5.1.2. Installation issues
5.1.3. Environmental loads
5.1.4. Operational issues
5.1.5. Removal issues
5.2. Axial pile

About the Author

CURRICULUM VITAE E T Richard Dean Nationality: British Age / Date Of Birth: 56 years, 3 Sep 1952 e-mail address richard.dean@soilmodels.com Expertise: Geotechnical Engineering, including onshore, offshore and coastal civil engineering; foundation

Ask a Question About this Product More...
 
Look for similar items by category
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top