Warehouse Stock Clearance Sale

Grab a bargain today!


Partial Differential Equations
By

Rating

Product Description
Product Details

Table of Contents

1 Power Series Methods.- §1.1. The Simplest Partial Differential Equation.- §1.2. The Initial Value Problem for Ordinary Differential Equations.- §1.3. Power Series and the Initial Value Problem for Partial Differential Equations.- §1.4. The Fully Nonlinear Cauchy—Kowaleskaya Theorem.- §1.5. Cauchy—Kowaleskaya with General Initial Surfaces.- §1.6. The Symbol of a Differential Operator.- §1.7. Holmgren’s Uniqueness Theorem.- §1.8. Fritz John’s Global Holmgren Theorem.- §1.9. Characteristics and Singular Solutions.- 2 Some Harmonic Analysis.- §2.1. The Schwartz Space $$mathcal{J}({mathbb{R}^d})$$.- §2.2. The Fourier Transform on $$mathcal{J}({mathbb{R}^d})$$.- §2.3. The Fourier Transform onLp$${mathbb{R}^d}$$d):1 ?p?2.- §2.4. Tempered Distributions.- §2.5. Convolution in $$mathcal{J}({mathbb{R}^d})$$ and $$mathcal{J}'({mathbb{R}^d})$$.- §2.6. L2Derivatives and Sobolev Spaces.- 3 Solution of Initial Value Problems by Fourier Synthesis.- §3.1. Introduction.- §3.2. Schrödinger’s Equation.- §3.3. Solutions of Schrödinger’s Equation with Data in $$mathcal{J}({mathbb{R}^d})$$.- §3.4. Generalized Solutions of Schrödinger’s Equation.- §3.5. Alternate Characterizations of the Generalized Solution.- §3.6. Fourier Synthesis for the Heat Equation.- §3.7. Fourier Synthesis for the Wave Equation.- §3.8. Fourier Synthesis for the Cauchy—Riemann Operator.- §3.9. The Sideways Heat Equation and Null Solutions.- §3.10. The Hadamard—Petrowsky Dichotomy.- §3.11. Inhomogeneous Equations, Duhamel’s Principle.- 4 Propagators andx-Space Methods.- §4.1. Introduction.- §4.2. Solution Formulas in x Space.- §4.3. Applications of the Heat Propagator.- §4.4. Applications of the Schrödinger Propagator.- §4.5. The Wave EquationPropagator ford = 1.- §4.6. Rotation-Invariant Smooth Solutions of $${square _{1 + 3}}mu = 0$$.- §4.7. The Wave Equation Propagator ford =3.- §4.8. The Method of Descent.- §4.9. Radiation Problems.- 5 The Dirichlet Problem.- §5.1. Introduction.- §5.2. Dirichlet’s Principle.- §5.3. The Direct Method of the Calculus of Variations.- §5.4. Variations on the Theme.- §5.5.H1 the Dirichlet Boundary Condition.- §5.6. The Fredholm Alternative.- §5.7. Eigenfunctions and the Method of Separation of Variables.- §5.8. Tangential Regularity for the Dirichlet Problem.- §5.9. Standard Elliptic Regularity Theorems.- §5.10. Maximum Principles from Potential Theory.- §5.11. E. Hopf’s Strong Maximum Principles.- APPEND.- A Crash Course in Distribution Theory.- References.

Promotional Information

Corrected second printing

Reviews

"...this is an outstanding text presenting a healthy challenge not only to students but also to teachers used to more traditional or more pedestrian developments of the subject.--MATHEMATICAL REVIEWS

Ask a Question About this Product More...
 
Item ships from and is sold by Fishpond Retail Limited.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.