We use cookies to provide essential features and services. By using our website you agree to our use of cookies .

×

Warehouse Stock Clearance Sale

Grab a bargain today!


Physics of Ice
By

Rating

Product Description
Product Details

Table of Contents

1: Introduction
1.1: The importance of ice
1.2: The physics of ice and structure of the book
1.3: The water molecule
1.4: The hydrogen bond
2: Ice Ih
2.1: Introduction
2.2: Crystal structure
2.3: Zero-point entropy
2.4: Lattice energy and hydrogen bonding
2.5: The actual structure
2.6: Summary
3: Elastic, thermal, and lattice dynamical properties
3.1: Introduction
3.2: Elasticity
3.3: Thermal properties
3.4: Spectroscopy of lattice vibrations
3.5: Modelling
4: Electrical properties-theory
4.1: Basics
4.2: Frequency dependence of the Debye relaxation
4.3: The static susceptibility ?s
4.4: Protonic point defects
4.5: Jaccard theory
4.6: Ice with blocking electrodes
4.7: Time constraints
4.8: Summary
5: Electrical properties-experimental
5.1: Introduction
5.2: Techniques
5.3: Pure ice
5.4: Doped ice
5.5: Charge exchange at ice-metal electrodes
5.6: Space-change effects
5.7: Injection and extraction of charge carriers
5.8: Thermally-stimulated depolarization
6: Point defects
6.1: Introduction
6.2: Thermal equilibrium concentrations
6.3: Diffusion and mobility
6.4: Molecular defects
6.5: Protonic point defects
6.6: Nuclear magnetic resonance
6.7: Muon spin rotation, relaxation, and resonance
6.8: Chemical impurities
6.9: Electronic defects
6.10: Photoconductivity
6.11: Review
7: Dislocations and planar defects
7.1: Introduction to dislocations
7.2: Dislocations in the ice structure
7.3: Direct observation of dislocations
7.4: Dislocation mobility
7.5: Electrical effects
7.6: Stacking faults
7.7: Grain boundaries
8: Mechanical properties
8.1: Introduction
8.2: Plastic deformation of single crystals
8.3: Plastic deformation of polycrystalline ice
8.4: Brittle fracture of polycrystalline ice
8.5: Summary
9: Optical and electronic properties
9.1: Introduction
9.2: Propagation of electromagnetic waves in ice
9.3: Infrared range
9.4: Visible optical range-birefringence
9.5: Ultraviolet range
9.6: Electronic structure
10: The surface of ice
10.1: Introduction
10.2: Surface structure
10.3: Optical ellipsometry and microscopy
10.4: Electrical properties of the surface
10.5: Nuclear magnetic resonance
10.6: Scanning force microscopy
10.7: Surface energy
10.8: Review of experimental evidence
10.9: Theoretical models
10.10: Conclusions
11: The other phases of ice
11.1: Introduction
11.2: Ice XI-the ordered form of ice Ih
11.3: Ices VII and VIII
11.4: Ice VI
11.5: Ice II
11.6: Ices III, IV, V, IX, and XII
11.7: Ice X and beyond
11.8: Cubic ice (Ice Ic)
11.9: Amorphous ices
11.10: Clathrate hydrates
11.11: Lattice vibrations and the hydrogen bond
12: Ice in nature
12.1: Lake and river ice
12.2: Sea ice
12.3: Ice in the atmosphere
12.4: Snow
12.5: Glacier and polar ice
12.6: Frozen ground
12.7: Ice in the Solar System
13: Adhesion and friction
13.1: Experiments on adhesion
13.2: Physical mechanisms of adhesion
13.3: Friction

Reviews

'...concise but complete reference book on the topic, suitable for all those whose reserach impinges on any aspect of ice physics. Clear explanations, aided by useful diagrams and tables of data, cover the main topics, with sufficient references to more esoteric areas...A new text book the Physics of Ice has been long overdue...The careful scholarship and cpmplementary expertise of the two authors have combined to produce a useful addition to every library and
many personal collections. This book provides much for the ice specialist. the newcomer to the field and thoseseeking any information about this amazing material' British Crystallographic Association
News

Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top