Free Shipping Anywhere in the World

Shop over 1 Million Toys in our Huge New Range

Radiation Damage in Biomolecular Systems
By

Rating

Product Description
Product Details

Table of Contents

Preface.- Acronyms.
Part I Radiation Induced Damage at the Molecular Level
1: Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons.- 2: The Role of Secondary Electrons in Radiation Damage.- 3: Electron Transfer-Induced Fragmentation in (Bio)Molecules by Atom-Molecule.- 4: Following Resonant Compound States after Electron Attachment.- 5: Electron-Biomolecule Collision Studies Using the Schwinger Multichannel Method.- 6: Resonances in Electron Collisions with Small Biomolecules Using the R-Matrix Method.- 7: A Multiple-Scattering Approach to Electron Collisions with Small Molecular Clusters.- 8: Positronium Formation and Scattering from Biologically Relevant Molecules.- 9: Total Cross Sections for Positron Scattering from Bio-Molecules.- 10: Soft X-ray Interaction with Organic Molecules of Biological Interest.- 11: Ion-Induced Radiation Damage in Biomolecular Systems.- 12: Theory and Calculation of Stopping Cross Sections of Nucleobases for Swift Ions.
Part II Modelling Radiation Damage
13: Monte Carlo Methods to Model Radiation Interactions and Induced Damage.- 14: Positron and Electron Interactions and Transport in Biological Media.- 15: Energy Loss of Swift Protons in LiquidWater: Role of Optical Data Input and Extension Algorithms.- 16: Quantum-Mechanical Contributions to Numerical Simulations of Charged Particle Transport at the DNA Scale.- 17: Multiscale Approach to Radiation Damage Induced by Ions.- 18: Track-Structure Monte Carlo Modelling in X-ray and Megavoltage Photon Radiotherapy.- 19: Simulation of Medical Linear Accelerators with PENELOPE.
Part III Biomedical Aspects of Radiation Effects
20: Repair of DNA Double-Strand Breaks.- 21: Differentially Expressed Genes Associated with Low-Dose Gamma Radiation.- 22: Chromosome Aberrations by Heavy Ions.- 23: Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models.- 24: Therapeutic Applications of Ionizing Radiations.- 25: Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology.
Part IV Future Trends in Radiation Research and its Applications
26: Medical Applications of Synchrotron Radiation.- 27: Photodynamic Therapy.- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy.- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size.- 30 Future Particle Accelerator Developments for Radiation Therapy.Part III Biomedical Aspects of Radiation Effects
20: Repair of DNA Double-Strand Breaks.- 21: Differentially Expressed Genes Associated with Low-Dose Gamma Radiation.- 22: Chromosome Aberrations by Heavy Ions.- 23: Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models.- 24: Therapeutic Applications of Ionizing Radiations.- 25: Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology.
Part IV Future Trends in Radiation Research and its Applications
26: Medical Applications of Synchrotron Radiation.- 27: Photodynamic Therapy.- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy.- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size.- 30 Future Particle Accelerator Developments for Radiation Therapy.Part IV Future Trends in Radiation Research and its Applications
26: Medical Applications of Synchrotron Radiation.- 27: Photodynamic Therapy.- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy.- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size.- 30: Future Particle Accelerator Developments for Radiation Therapy.

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
Item ships from and is sold by Fishpond.com, Inc.
Back to top