Warehouse Stock Clearance Sale

Grab a bargain today!


Representation Theory, Number Theory, and Invariant Theory
By

Rating

Product Description
Product Details

Table of Contents

Euler-Poincaré Characteristic for the Oscillator Representation (Adams, Prasad, Savin).- Problems Beyond Endoscopy (Arthur).- Unipotent Representations and the Dual Pair Correspondence (Barbasch).- On the Elliptic Nonabelian Fourier Transform for Unipotent Representations of p-adic Groups (Ciubotaru, Opdam).- Derivatives and L-functions for GLn (Cogdell, Piatetski-Shapiro).- The Howe Duality Conjecture: Quaternionic Case (Gan, Sun).- Estimates on Eisenstein Distributions for Reciprocals of p-adic L-functions: The Case of Irregular Primes (Gelbart, Greenberg, Miller, Shahidi).- Small Representations of Finite Classical Groups (Gurevitch, Howe).- Period Relations and Special Values of Rankin-Selberg L-functions (Harris, Lin).- Standard Monomial Theory for Harmonics in Classical Invariant Theory (Howe, Kim, Lee).- Automorphic Integral Transforms for Classical Groups II: Twisted Descents (Jiang, Zhang).- Construction of Tame Types (Kim, Yu).- Global Analysis by Hidden Symmetry (Kobayashi).- Le Lemme Fondamental Pour L'endoscopie Tordue: le CAS OÙ le Groupe Endoscopique Elliptique Non Ramifié Est un Tore (Lemaire, Waldspurger).- Paquets d'Arthur Spéciaux Unipotents aux Places Archimédiennes et Correspondence de Howe (Moeglin).- Computations with Bernstein Projectors of SL (2) (Moy).- Some New Supercuspidal Representations (Reeder).- Plancherel Decomposition of Howe Duality and Euler Factorization of Automorphic Functionals (Sakellaridis).- On the Conservation Conjectures of Kudla and Rallis (Sun, Zhu).- An Analogue of the Kostant-Rallis Multiplicity Theorem for θ-Group Harmonics (Wallach).

Ask a Question About this Product More...
 
Look for similar items by category
Item ships from and is sold by Fishpond World Ltd.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.