We use cookies to provide essential features and services. By using our website you agree to our use of cookies .


Warehouse Stock Clearance Sale

Grab a bargain today!

In Silico Drug Design


Product Description
Product Details

Table of Contents

Section 1. Introduction 1. Drug Repositioning: New Opportunities for Older Drugs 2. Computational Drug Design Methods - Current and Future Perspectives Section 2. Theoretical Background and Methodologies 3. In Silico Drug Design Methods for Drug Repurposing 4. Computational Drug Repurposing for Neurodegenerative Diseases 5. Repurposed molecules: A New Hope in Tackling Neglected Infectious Diseases 6. Molecular Docking: A Structure-Based Approach for Drug Repurposing 7. Data Science Driven Drug Repurposing for Metabolic Disorders 8. Data-driven Systems Level Approaches for Drug Repurposing: Combating Drug Resistance in Priority Pathogens 9. In Silico Repurposing of Cell Cycle Modulators for Cancer Treatment 10. Proteochemometric Modeling for Drug Repositioning 11. Drug Repurposing from Transcriptome Data: Methods and Applications 12. Omics-driven Knowledge Based Discovery of Anthelmintic Targets and Drugs 13. Analysis of Chemical Spaces: Implications for Drug Repurposing Section 3. Examples and Case Studies 14. Drug Repurposing in Search of Anti-Infectives: Need of the Hour in the Multi-Drug Resistance Era! 15. Application of In Silico Drug Repurposing in Infectious Diseases 16. In Silico Modeling of FDA-approved Drugs for Discovery of Anti-candida Agents: A Drug Repurposing Approach 17. In silico Modeling of FDA-approved Drugs for Discovery of Anticancer Agents: A Drug Repurposing Approach 18. Tackling Lung Cancer Drug Resistance using Integrated Drug Repurposing Strategy 19. In Silico Modeling of FDA-approved Drugs for Discovery of Anti-cancer Agents: A Drug Repurposing Approach 20. Drug Repurposing by Connectivity Mapping and Structural Modeling 21. In Silico Modeling of FDA-approved Drugs for Discovery of Therapies Against Neglected Diseases: A Drug Repurposing Approach 22. Ascorbic Acid is a Potential Inhibitor of Collagenases - In Silico and In Vitro Biological Studies 23. Bioinformatic Approaches for Repurposing and Repositioning Antibiotics, Antiprotozoals and Antivirals Section 4. Tools and databases 24. In Silico Databases and Tools for Drug Repurposing 25. An Overview of Computational Methods, Tools, Servers and Databases for Drug Repurposing 26. In silico Drug Repurposing for MDR Bacteria: Opportunities and Challenges 27. Drug Repositioning Strategies to Explore New Candidates Treating Prostate Cancer 28. PDID: Database of Experimental and Putative Drug Targets in Human Proteome

About the Author

Dr. Kunal Roy is a Professor and Ex-Head in the Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India. He has been a recipient of Commonwealth Academic Staff Fellowship (University of Manchester, 2007) and Marie Curie International Incoming Fellowship (University of Manchester, 2013). The field of his research interest is QSAR and Molecular Modeling with application in Drug Design and Ecotoxicological Modeling. Dr. Roy has published more than 350 research articles in refereed journals (current SCOPUS h index 49). He has also coauthored two QSAR-related books, edited six QSAR books and published more than ten book chapters. Dr. Roy is a Co-Editor-in-Chief of Molecular Diversity (Springer Nature). He also serves as a member of the Editorial Boards of several International Journals.

Ask a Question About this Product More...
Look for similar items by category
Item ships from and is sold by Fishpond World Ltd.
Back to top