Warehouse Stock Clearance Sale

Grab a bargain today!


Smart Grid and Enabling Technologies
By

Rating

Product Description
Product Details

Table of Contents

About the Authors

Acknowledgements

Preface

List of Abbreviations

  • 1.      Smart Grid Architectural Overview
  • 1.1   Introduction

    1.2   Fundamentals of Electric Power system

    1.2.1        Electrical Power Generation

    1.2.2        Electric Power Transmission

    1.2.3        Electric Power Distribution

    1.3   More limitations of the traditional power grid

    1.3.1        Lack of circuit capacity and aging assets

    1.3.2        Operation Constrains

    1.3.3        Security of Supply

    1.3.4        Respond to national initiatives

    1.4   Smart Grid Definition

    1.5   Smart Grid Characteristics

    1.5.1        Achieve flexibility in the network topology

    1.5.2        Improved efficiency

    1.5.3        Transportation Electrification

    1.5.4        Demand response support

    1.5.5        Improvement in Reliability and Power Quality

    1.5.6        Market-enabling

    1.6   Moving towards Future grid

    1.6.1        Electrification

    1.6.2        Decentralization

    1.6.3        Digitalization

    1.7   The transformation from the traditional grid to smart grid

    1.8   Smart Grid Enabling Technologies

    1.9   Smart Grid Architecture

    1.9.1        Distributed Generation

    1.9.2        Energy Storage

    1.9.3        Demand Response

    1.9.4        Integrated communications

    1.9.4.1   Communication Networks

    1.9.4.2   Power Line Communication (PLC)

    1.9.4.3   Standardization

    1.9.5        Customer Engagement

    1.9.6        Sensors and PMU Units

    1.9.7        Smart Meters

    1.10Classification of Smart Grid Control

    1.11Smart Grid Challenges

    1.11.1     Accessibility and acceptability

    1.11.2     Accountability

    1.11.3     Controllability

    1.11.4     Interoperability

    1.11.5     Interchangeability

    1.11.6     Maintainability

    1.11.7     Optimality

    1.11.8     Security

    1.11.9     Upgradability

    1.12Organization of the Book

  • 2.      Renewable Energy: Overview, Opportunities and Challenges
  • 2.1   Introduction

    2.2   Description of Renewable Energy Sources

    2.2.1        Bioenergy Energy

    2.2.2        Geothermal Energy

    2.2.3        Hydropower Energy

    2.2.4        Marine Energy

    2.2.5        Solar Energy

    2.2.5.1   Photovoltaic

    2.2.5.2   Concentrated Solar Power

    2.2.5.3   Solar Thermal Heating and Cooling

    2.2.6        Wind Energy

    2.3   Renewable Energy: Growth, Investment, Benefits and Deployment

    2.4   Smart Grid Enable Renewables

    2.5   Conclusion

    2.6   References

  • 3.       Power Electronics Converters for Distributed Generation
  • 3.1   An overview of distributed generation systems with power electronics

    3.1.1        Photovoltaic technology

    3.1.2        Wind power technology

    3.1.3        Energy storage systems

    3.2   Power electronics for grid-connected AC smart grid

    3.2.1        Voltage-source converters

    3.2.2        Multilevel power converters

    3.3   Power electronics enabled autonomous AC power systems

    3.3.1        Converter level controls in microgrids

    3.3.2        System level coordination control

    3.4   Power electronics enabled autonomous DC power systems

    3.4.1        Converter level controls

    3.4.2        System level coordination control

    3.5   Conclusion

    3.6   References

  • 4.      Energy Storage Systems as an Enabling Technology for the Smart Grid
  • 4.1   Introduction

    4.2   Structure of Energy Storage System

    4.3   Energy Storage Systems Classification and Description

    4.4   Current State of Energy Storage Technologies

    4.5   Techno-Economic Characteristics of Energy Storage Systems

    4.6   Selection of Energy Storage Technology for Certain Application

    4.7   Energy Storage Applications

    4.8   Barriers to the Deployment of Energy Storage

    4.9   Energy Storage Roadmap

    4.10Conclusion

    4.11References

  • 5.      Microgrids: State of the Art and Future Challenges
  • 5.1   Introduction

    5.2   DC Versus AC Microgrid

    5.2.1        LVAC and LVDC Networks

    5.2.2        AC Microgrid

    5.2.3        DC Microgrid

    5.3   Microgrid Design

    5.3.1        Methodology for the Microgrid Design

    5.3.2        Design Considerations

    5.4   Microgrid Control

    5.4.1        Primary Control Level

    5.4.2        Secondary Control Level

    5.4.3        Tertiary Control Level

    5.5   Microgrid Economics

    5.5.1        Capacity Planning

    5.5.2        Operations Modeling

    5.5.3        Financial Modeling

    5.5.4        Barriers to Realizing Microgrids

    5.6   Operation of Multi-Microgrids

    5.7   Microgrid Benefits

    5.7.1        Economic Benefits

    5.7.2        Technical Benefits

    5.7.3        Environmental Benefits

    5.8   Challenges

    5.9   Conclusion

    5.10References

  • 6.      Smart Transportation
  • 6.1   Introduction

    6.2   Electric Vehicle Topologies

    6.2.1        Battery Electric Vehicles

    6.2.2        Plug-in Hybrid Electric Vehicles

    6.2.3        Hybrid Electric Vehicles

    6.2.4        Fuel-Cell Electric Vehicles

    6.2.5        Fuel-Cell Electric Vehicles

    6.3   Powertrain Architectures

    6.3.1        Series HEV Architecture

    6.3.2        Parallel HEV Architecture

    6.3.3        Series-Parallel HEV Architecture

    6.4   Battery Technology

    6.4.1        Battery Parameters

    6.4.2        Common Battery Chemistries

    6.5   Battery Charger Technology

    6.5.1        Charging Rates and Options

    6.5.2        Wireless Charging

    6.6   Vehicle to Grid (V2G) Concept

    6.6.1        Unidirectional V2G

    6.6.2        Bidirectional V2G

    6.7   Barriers to EV Adoption

    6.7.1        Technological Problems

    6.7.2        Social Problems

    6.7.3        Economic Problems

    6.8   Trends and Future Developments

    6.9   Conclusion

    6.10References

  • 7.      Net Zero Energy Buildings
  • 7.1   Introduction

    7.2   Net Zero Energy Building Definition

    7.3   Net Zero Energy Building Design

    7.4   Net Zero Energy Building: Modelling, Controlling and Optimization

    7.5   Net Zero Energy Community

    7.6   Net Zero Energy Building: Trends, Benefits, Barriers and Efficiency Investments

    7.7   Conclusion

    7.8   Reference

  • 8.      Smart Grid Communication Infrastructures
  • 8.1   Introduction

    8.2   Advanced Metering Infrastructure

    8.3   Smart Grid Communications

    8.3.1        Challenges of SG Communications

    8.3.2        Requirements of SG Communications

    8.3.3        Architecture of SG Communication

    8.3.4        SG Communication technologies

    8.4   Conclusion

    8.5   References

  • 9.      Smart Grid Information Security
  • 9.1   Introduction

    9.2   Smart Grid Layers 

    9.2.1        The power system layer

    9.2.2        The information layer

    9.2.3        The communication layer

    9.3   Attacking Smart Grid Network Communication

    9.3.1        Physical Layer Attacks.

    9.3.2        Data Injection and Replay Attacks.

    9.3.3        Network-Based Attacks

    9.4    Physical Layer Attacks.

    9.4.1        Resilient Industrial Control Systems

    9.4.2        Areas of Resilience

    9.4.2.1   Human systems

    9.4.2.2   Cyber security

    9.4.2.3   Complex networks and networked control systems

    9.5   Cyber Security Challenges in Smart Grid

    9.6   Adopting a Smart Grid Security Architecture Methodology

    9.6.1        Smart Grid Security Objectives.

    9.6.2        Cyber Security Requirements

    9.6.2.1   Attack detection and resilience operations.

    9.6.2.2   Identification, and access control.

    9.6.2.3   Secure and efficient communication protocols.

    9.7   Validating Your Smart Grid

    9.8   Threats and Impacts: Consumers and Utility Companies

    9.9   Governmental Effort to Secure Smart Grids

    9.10Conclusion

    9.11References

    10.  Data Management in Smart Grid

    10.1Introduction

    10.2 Sources of Data in Smart Grid

    10.3Big Data Era

    10.4Tools to Manage Big Data

    10.4.1     Apache Hadoop

    10.4.2     Not Only SQL (NoSQL)

    10.4.3     Microsoft HDInsight

    10.4.4     Hadoop MapReduce

    10.4.5     Cassandra

    10.4.6     Storm

    10.4.7     Hive

    10.4.8     Plotly

    10.4.9     Talend

    10.4.10  Bokeh

    10.4.11  Cloudera

    10.5Big Data Integration, Frameworks, and Data Bases

    10.6Building the Foundation for Big Data Processing

    10.6.1     Big Data Management Platform

    10.6.1.1  Acquisition and Recording.

    10.6.1.2  Extraction, Cleaning, and Prediction.

    10.6.1.3  Big Data Integration

    10.6.2     Big Data Analytics Platform

    10.6.2.1  Modeling and Analysis

    10.6.2.2  Interpretation

    10.7Transforming Big Data for High Value Action

    10.7.1     Decide what to produce

    10.7.2     Source the raw materials

    10.7.3     Produce insights with speed

    10.7.4     Deliver the goods and act

    10.8Privacy Information Impacts on Smart Grid.

    10.9Meter Data Management for Smart Grid

    10.10                  Summary

    10.11                  References

    11.  Demand-Management

    11.1 Introduction

    11.2Demand Response

    11.3Demand Response Programs

    11.3.1     Load-Response Programs

    11.3.2     Price Response Programs

    11.4 End User Engagement

    11.5Challenges of Demand Response within Smart Grid

    11.6Demand-Side Management (DSM)

    11.7Demand Side Management Techniques

    11.8Demand-Side Management Evaluation

    11.9Demand Response Applications

    11.10                  Summary

    11.11                  References

    12.  Business Models for the Smart Grid

    12.1The Business Model Concept

    12.2The Electricity Value Chain

    12.3Electricity Markets

    12.4Review of the Previous Proposed Smart Grid Business Models

    12.4.1     Timing-Based Business Model

    12.4.2     Business Intelligence Model

    12.4.3     Business Models for Renewable Energy

    12.4.4     Service-oriented Business Models

    12.4.5     Prosumer Business Models

    12.4.6     Integrated Energy Services Business Model

    12.4.7     Future Business Model Levers

    12.5Blockchain Based Electricity Market

    12.6Conclusion

    12.7References

    13.  Smart Grid Customers’ Acceptance and Engagement

    13.1Introduction

    13.2Customer as one of the Smart Grid Domains

    13.3Understanding the Smart Grid Customer 

    13.4Smart Grid Customer Acceptance

    13.5Customer Engagement in the Smart Grid

    13.6Challenges for Consumer Engagement, Policy Recommendation and Research Agenda

    13.7Conclusion

    14.  Cloud Computing for Smart Grid

    14.1 Introduction

    14.2 Overview of Cloud Computing for Smart Grid

    14.3 Cloud Computing

    14.4 Cloud computing Architecture

    14.4.1     1Infrastructure as a Service (IaaS)

    14.4.2     2Platform-as-a-Service (PaaS)

    14.4.3     Software-as-a-Service (SaaS)

    14.5Cloud Computing Applications

    14.6Cloud Applications for Smart Grid performance

    14.7Cloud Applications for Energy Management

    14.8Cloud computing-based power dispatching in smart grid

    14.9Cloud computing characteristics in improving SG

    14.10                  Opportunities and challenges of Cloud Computing in Smart grid

    14.11                  Multiple perspectives for cloud implementation

    14.12                  Conclusion

    15.  On the Pivotal Role of Artificial Intelligence Towards the Evolution of Smart Grids: Advanced Methodologies and Applications

    15.1Introduction

    15.2Century-old grid and SG transition

    15.3AI techniques in smart grid

    15.3.1     AI commonly deployed techniques

    15.3.1.1  Artificial Neural Networks-based

    15.3.1.2  Fuzzy logic-based

    15.3.1.3  Ensemble methods-based

    15.3.1.4  Genetic algorithms-based

    15.3.1.5  Expert Systems-based

    15.3.1.6  Support Vector Machines-based

    15.3.1.7  Hybrid models-based

    15.3.2     Machine Learning Model Evaluation

    15.4Major applications of AI in SG

    15.4.1     Load forecasting

    15.4.2     Alternative energy forecasting

    15.4.3     Photovoltaic energy

    15.4.4     Wind power

    15.4.5     MPPT-based AI

    15.4.6     Fault diagnosis-based AI

    15.4.7     AI and Cyber smart grid security

    15.4.8     Electricity price forecasting

    15.5Challenges and future scope

    15.6Conclusion

     

    16.  Smart Grid Simulation Tools

    16.1Introduction

    16.2Simulation Approaches

    16.2.1     Multi-Domain Simulation

    16.2.2     Co-Simulation

    16.2.3     Real-Time Simulation and Hardware-in-the-Loop

    16.3Review of Smart Grid Planning and Analysis Tools

    16.3.1     PSCAD

    16.3.2     PowerWorld Simulator

    16.3.3     ETAP

    16.3.4     DIgSILENT PowerFactory

    16.3.5     OpenDSS

    16.3.6     GridLab-D

    16.3.7     Conclusions

    17.  Smart Grid Standards and Interoperability

    17.1Introduction

    17.2Organizations for Smart Grid Standardization

    17.2.1     IEC Strategic Group on Smart Grid

    17.2.2     Technical Communities and their Subcommittees of IEEE Power and Energy Society (PES)

    17.2.3     National Institute of Standards and Technology

    17.2.4     National Standard of P.R.C. for Smart Grid

    17.3Smart Grid Policies for Standard Developments

    17.3.1     United States

    17.3.2     Germany

    17.3.3     Europe

    17.3.4     South Korea

    17.3.5     Australia

    17.3.6     Canada

    17.3.7     Japan

    17.3.8     China

    17.4Smart Grid Standards

    17.4.1     Revenue Metering Information Model

    17.4.2     Building Automation

    17.4.3     Substation Automation

    17.4.4     Powerline Networking

    17.4.5     Energy Management Systems

    17.4.6     Interoperability Center Communications

    17.4.7     Cyber Security

    17.4.8     Electric Vehicles

    17.5Conclusion

    17.6References

    18.  Smart Grid Challenges and Barriers, Critical Success Factors and Future Vision

    18.1Introduction

    18.2Structure of modern smart-grids

    18.3Concept of reliability in power systems

    18.4Smart-grid challenges and barriers

    18.4.1     Low inertia issues – Frequency support

    18.4.2     Moving towards full/more renewable energies

    18.4.3     Protection issues

    18.4.4     Control dynamic interactions.

    18.4.5     Reliability issues

    18.4.6     Marketing

    18.5New reliability paradigm in smart-grids

    18.5.1     Adequacy

    18.5.2     Security

    18.5.3     Static security

    18.5.4     Dynamic/transient security

    18.5.5     Cyber-security

    18.6Summary

    18.7References

    Index [not supplied to follow later

    About the Author

    Shady S. Refaat is an Associate Research Scientist at Texas A&M University at Qatar. His research interests include electrical machines, power systems, smart grid, energy management systems, reliability of power grid and electric machinery, fault detection, and condition monitoring in conjunction with fault management and development of fault tolerant systems.

    Omar Ellabban is a Principal Power Electronics Engineer (Team Lead) at Compound Semiconductor Applications Catapult in Newport, UK. His research activities focus on Compound Semiconductor Applications, renewable energies integration, smart grid, power electronics converters design and control for various applications, and electric vehicles.

    Sertac Bayhan currently works at the Qatar Environment and Energy Research Institute, Qatar, as a Senior Scientist. Sertac received his M.Sc. and Ph.D. degrees in Electrical Engineering from Gazi University, Ankara, Turkey, in 2008 and 2012, respectively.

    Haitham Abu-Rub is Professor at Texas A&M University at Qatar, and is the Managing Director of the Smart Grid Center at the same university. His research interests include energy conversion systems, including electric drives, power electronic converters, renewable energy, and smart grid.

    Frede Blaabjerg is Professor of Power Electronics and Drives at Aalborg University in Denmark. His research interests include power electronics and its applications such as in wind turbines, PV systems, reliability, harmonics, and adjustable speed drives.

    Miroslav M. Begovic is Carolyn S. and Tommie E. Lohman ’59 Professor at Texas A&M University in the United States. He is Head of the Department of Electrical and Computer Engineering. His research interests include the monitoring, analysis, and control of power systems, as well as the development and applications of renewable and sustainable energy systems.

    Ask a Question About this Product More...
     
    Item ships from and is sold by Fishpond World Ltd.

    Back to top
    We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.