Warehouse Stock Clearance Sale

Grab a bargain today!


Statistical Methods for Recommender Systems
By

Rating

Product Description
Product Details

Table of Contents

Part I. Introduction: 1. Introduction; 2. Classical methods; 3. Explore/exploit for recommender problems; 4. Evaluation methods; Part II. Common Problem Settings: 5. Problem settings and system architecture; 6. Most-popular recommendation; 7. Personalization through feature-based regression; 8. Personalization through factor models; Part III. Advanced Topics: 9. Factorization through latent dirichlet allocation; 10. Context-dependent recommendation; 11. Multi-objective optimization.

Promotional Information

This book provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and the state-of-the-art solutions in personalization.

About the Author

Dr Deepak Agarwal is a big data analyst with more than fifteen years of experience developing and deploying state-of-the-art machine learning and statistical methods for improving the relevance of web applications. He is also experienced in conducting new scientific research to solve notoriously difficult big data problems, especially in the areas of recommender systems and computational advertising. He is a Fellow of the American Statistical Association and associate editor of two top-tier journals in statistics. Dr Bee-Chung Chen is a Senior Staff Engineer and Applied Researcher at LinkedIn. He has been a key designer of the recommendation algorithms that power LinkedIn homepage and mobile feeds, Yahoo! homepage, Yahoo! News and other sites. Dr Chen is a leading technologist with extensive industrial and research experience. His research areas include recommender systems, machine learning and big data analytics.

Reviews

'This book provides a comprehensive guide to state-of-the-art statistical techniques that are used to power recommender systems. … The text is authoritative and well written, with the authors drawing on their extensive experience of researching, implementing and evaluating real-world recommender systems. The book considers the underlying mathematics of the techniques it describes and, as such, is aimed at a readership with a strong background in statistics and cognate subjects. However, while readers without such a background are likely to find the mathematics somewhat challenging, the prose descriptions are highly readable and enable readers to understand the key principles and ideas which underpin the various approaches. This book should be of interest to those involved with recommender systems as well as to those with a broader interest in machine learning.' Patrick Hill, BCS: The Chartered Institute for IT (www.bcs.org)

Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond Retail Limited.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.