Warehouse Stock Clearance Sale

Grab a bargain today!


Wavelets, Approximation, and Statistical Applications
By

Rating

Product Description
Product Details

Table of Contents

1 Wavelets.- 1.1 What can wavelets offer?.- 1.2 General remarks.- 1.3 Data compression.- 1.4 Local adaptivity.- 1.5 Nonlinear smoothing properties.- 1.6 Synopsis.- 2 The Haar basis wavelet system.- 3 The idea of multiresolution analysis.- 3.1 Multiresolution analysis.- 3.2 Wavelet system construction.- 3.3 An example.- 4 Some facts from Fourier analysis.- 5 Basic relations of wavelet theory.- 5.1 When do we have a wavelet expansion?.- 5.2 How to construct mothers from a father.- 5.3 Additional remarks.- 6 Construction of wavelet bases.- 6.1 Construction starting from Riesz bases.- 6.2 Construction starting from m0.- 7 Compactly supported wavelets.- 7.1 Daubechies’ construction.- 7.2 Coiflets.- 7.3 Symmlets.- 8 Wavelets and Approximation.- 8.1 Introduction.- 8.2 Sobolev Spaces.- 8.3 Approximation kernels.- 8.4 Approximation theorem in Sobolev spaces.- 8.5 Periodic kernels and projection operators.- 8.6 Moment condition for projection kernels.- 8.7 Moment condition in the wavelet case.-9 Wavelets and Besov Spaces.- 9.1 Introduction.- 9.2 Besov spaces.- 9.3 Littlewood-Paley decomposition.- 9.4 Approximation theorem in Besov spaces.- 9.5 Wavelets and approximation in Besov spaces.- 10 Statistical estimation using wavelets.- 10.1 Introduction.- 10.2 Linear wavelet density estimation.- 10.3 Soft and hard thresholding.- 10.4 Linear versus nonlinear wavelet density estimation.- 10.5 Asymptotic properties of wavelet thresholding estimates.- 10.6 Some real data examples.- 10.7 Comparison with kernel estimates.- 10.8 Regression estimation.- 10.9 Other statistical models.- 11 Wavelet thresholding and adaptation.- 11.1 Introduction.- 11.2 Different forms of wavelet thresholding.- 11.3 Adaptivity properties of wavelet estimates.- 11.4 Thresholding in sequence space.- 11.5 Adaptive thresholding and Stein’s principle.- 11.6 Oracle inequalities.- 11.7 Bibliographic remarks.- 12 Computational aspects and software.- 12.1 Introduction.- 12.2 The cascade algorithm.- 12.3 Discrete wavelet transform.- 12.4 Statistical implementation of the DWT.- 12.5 Translation invariant wavelet estimation.- 12.6 Main wavelet commands in XploRe.- A Tables.- A.1 Wavelet Coefficients.- A.2.- B Software Availability.- C Bernstein and Rosenthal inequalities.- D A Lemma on the Riesz basis.- Author Index.

Promotional Information

Springer Book Archives

Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond Retail Limited.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.